Box Plots

Quartiles equally divides data into four segments. The boundaries between the quartiles are labeled as $\mathbf{Q}_{1}, \mathbf{Q}_{2}$, and \mathbf{Q}_{3}.

Inner-Quartile Range (IQR) = $\mathbf{Q}_{\mathbf{3}} \mathbf{-} \mathbf{Q}_{\mathbf{1}}$ IQR tells us the width of the middle 50%, which is exactly the size of the box in a box plot.

Whiskers extend out from the box plot to include all data points smaller than \mathbf{Q}_{1} or larger than \mathbf{Q}_{3} and are not outliers.

Outliers are extreme values far from the median, drawn as individual points outside of the "box" and "whiskers":
High Outliers $>$ Q $_{3}+(1.5 \times$ IQR)
Low Outliers $<\mathbf{Q}_{1}$ - (1.5 \times IQR)

Probability Rules

$\mathbf{P}(\mathbf{A})$ is the probability of event \mathbf{A} occurring.
$\mathbf{P}(\mathbf{A} \mid \mathbf{B})$ is the probability of event A occurring given event B occurred.

Multiplication ("AND") Rule:
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathbf{A}) \times \mathrm{P}(\mathbf{B} \mid \mathbf{A})$
Addition ("OR") Rule:
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathbf{A})+\mathrm{P}(\mathbf{B})-\mathrm{P}(\mathbf{A}$ and $\mathbf{B})$
Negation and DeMorgan's Law:
$\mathrm{P}(\mathbf{A})=1-\mathrm{P}(\operatorname{not} \mathbf{A})$
$P($ "at least one") $=1-\mathrm{P}$ ("none")
$\mathrm{P}($ "not all") $=\mathbf{1}$ - P ("all")

Conditional Probability:
$\mathrm{P}(\mathbf{B} \mid \mathbf{A})=\mathrm{P}(\mathbf{A}$ and $\mathbf{B}) / \mathrm{P}(\mathbf{A})$
Bayes' Rule:
$\mathrm{P}(\mathbf{A} \mid \mathbf{B})=\mathrm{P}(\mathbf{B} \mid \mathbf{A}) \times(\mathrm{P}(\mathbf{A}) / \mathrm{P}(\mathbf{B}))$
Common Symbols/Notations:
"AND": intersection, \cap, or \wedge
"OR": union, U , or V
"NOT": complement, $\mathrm{A}^{\mathrm{C}}, \bar{A}$, or $\neg A$

Random Variables

Z-Score for random variables: $Z=($ Value $-E V) / S E$

Discrete Random Variables:
Expected Value: $E(X)=X_{1} P_{1}+\ldots+X_{n} P_{n}$
Standard Error: $\sigma_{X}=\sqrt{\left(X_{1}-\mu_{X}\right)^{2} P_{1}+\ldots+\left(X_{n}-\mu_{X}\right)^{2} P_{n}}$

Binomal Random Variables:
Expected Value $=$ n*p

Standard Error $=\sqrt{n p(1-p)}$
Means:
Expected Value: $E V_{\text {avg }}=E(\bar{X})=\mu$
Standard Error: $S E_{\text {avg }}=S D / \sqrt{n}$

Percents:
Expected Value: EV\%=population percent=p
Standard Error: $S E \%=(S D / \sqrt{n}) * 100 \%$
SD for a population with os and is (yes and no): $\sqrt{p(1-p)}$

Regression

Equation of the regression line: $\hat{y}=b_{0}+b_{1}^{*} x_{1}$
Slope of the regression line $=r^{*}$ SDy $/$ SDx
Y Intercept of the regression line= average of y - slope * average of x
$R M S E=S D_{\text {errors }}=\sqrt{1-r^{2}} \times S D_{y}$
residual= actual- predicted

Sampling

General z-score formula: z = (value-average)/SD
Quick formula for choosing how many people to poll:

$$
\mathrm{n}=\left(100 \%{ }^{*} \mathrm{z}^{*} \mathrm{SD} / \mathrm{M}_{\mathrm{of}} \mathrm{E}\right)^{2}
$$

